A Regularized Multivariate Regression Approach for eQTL Analysis
نویسندگان
چکیده
منابع مشابه
Regularized multivariate stochastic regression
In many high dimensional problems, the dependence structure among the variables can be quite complex. An appropriate use of the regularization techniques coupled with other classical statistical methods can often improve estimation and prediction accuracy and facilitate model interpretation, by seeking a parsimonious model representation that involves only the subset of revelent variables. We p...
متن کاملA novel quantile regression approach for eQTL discovery
Over the past decade, there has been a remarkable improvement in our understanding of the role of genetic variation in complex human diseases, especially via genome-wide association studies. However, the underlying molecular mechanisms are still poorly characterized, impending the development of therapeutic interventions. Identifying genetic variants that influence the expression level of a gen...
متن کاملBlock Regularized Lasso for Multivariate Multi-Response Linear Regression
The multivariate multi-response (MVMR) linear regression problem is investigated, in which design matrices are Gaussian with covariance matrices Σ = ( Σ, . . . ,Σ ) for K linear regressions. The support union of K p-dimensional regression vectors (collected as columns of matrix B∗) are recovered using l1/l2-regularized Lasso. Sufficient and necessary conditions to guarantee successful recovery ...
متن کاملStability Analysis for Regularized Least Squares Regression
We discuss stability for a class of learning algorithms with respect to noisy labels. The algorithms we consider are for regression, and they involve the minimization of regularized risk functionals, such as L(f) := 1 N PN i=1(f(xi) yi)+ kfkH. We shall call the algorithm ‘stable’ if, when yi is a noisy version of f (xi) for some function f 2 H, the output of the algorithm converges to f as the ...
متن کاملRegularized multivariate regression models with skew-t error distributions
We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Biosciences
سال: 2013
ISSN: 1867-1764,1867-1772
DOI: 10.1007/s12561-013-9106-9